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(BEC) had been defined as stopping sets (SS) [8], which can
be viewed as trapping sets on the BEC under BP decoding.
In [9], the authors proposed an important subclass of trapping
sets called absorbing sets (AS) that were shown to account
for nearly all decoding errors in the error floor of certain
LDPC codes. An (a, b) AS is defined as a decoder-independent
combinatorial object that can be studied analytically.

The approach we present in this paper involves a graph-
based method of targeted graph shortening for removal of
harmful objects in particular nested LDPC codes to improve
the BER performance in the high SNR region, thereby low-
ering the error-floor of the global code and all associated
subcodes. The technique involves targeting problematic graph
structures, such as stopping sets (SS) and/or absorbing sets
(AS), and breaking the connectivity of graphical objects by
careful modification of the graph. Note that particular care
needs to be taken to ensure improvement in all nested sub-
codes. Our multi-level method is a general way to system-
atically remove harmful objects via graph modification, or
targeted shortening of the LDPC code. We demonstrate the
approach as applied to a state-of-the-art algebraic nested code
structure [3] and provide simulation results showing lower
error-floors of all subcodes in the nested code structure with
only a very slight loss in code rate.

II. PROTOGRAPH-BASED NESTED CODES

In this section, we provide background on Tanner graphs,
absorbing sets, protograph-based code construction, and the
general concept of nested codes.

A. Tanner graphs and absorbing sets

We associate a bipartite Tanner graph with the m⇥n parity-
check matrix H of a linear code in the usual way [10]. The
set of n variable nodes associated with the columns of H is
denoted by V , and the set of m check nodes associated with
the rows of H is denoted as F . The girth of a Tanner graph
associated with a parity-check matrix H is the length of the
shortest simple cycle in the graph, i.e., the shortest closed walk
with no repetitions of nodes or edges.
For any subset D of the set of variable nodes V , let E(D)

(resp. O(D)) be the set of neighboring check nodes with even
(resp. odd) degree with respect to D. An (a, b) AS is a subset
D ✓ V of size a � 0, with O(D) of size b � 0 and with
the property that each variable node in D has strictly fewer
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I. INTRODUCTION

Linear nested codes [1], where subcodes are embedded 
in a larger code, were used in the 1970s for reliable storage of 
information in memory with defective cells [2] and have subse-
quently been widely applied in various multi-terminal source 
and channel coding problems (see e.g., [1], and references 
therein). In particular, we are interested in nested schemes 
for joint channel and network coding, where codewords of 
different subcodes C

i

, i = 1, 2, ..., N , are algebraically super-
imposed via a bitwise XOR [3]. Such codes were proposed, 
for example, in [4] for the generalized broadcast relay problem 
and two-way relaying in [5]. A particular challenge of this 
problem is that each subcode, and combinations of subcodes, 
should be itself a good channel code.

Low-density parity-check (LDPC) [6] codes have been 
shown to exhibit exceptional error-correcting performance 
with low-complexity iterative belief propagation (BP) decod-
ing. These capabilities have led to the application of LDPC 
codes in various areas, such as multi-user communications. 
It is well-known, however, that small graphical sub-structures 
existing in the Tanner graph of LDPC codes can cause iterative 
decoding algorithms to get trapped in certain error patterns. 
These weaknesses contribute significantly to the performance 
of the code in the so-called error-floor, or high SNR, region 
of the bit error rate (BER) performance curve. For the binary-
input additive white Gaussian noise (AWGN) channel, these 
error-prone sub-structures are named trapping sets [7]. In that 
paper, trapping sets were shown to have a strong influence 
on both the position and slope of the error floor. Previously, 
such weaknesses of LDPC codes on the binary erasure channel



neighbors in O(D) than in F\O(D). We say that an (a, b)
AS D is an (a, b) fully AS (FAS) if, in addition, all nodes in
V \D have strictly more neighbors in F\O(D) than in O(D).

B. Protographs

A protograph [11] with design rate R = 1� n
c

/n
v

is a
small bipartite graph that connects a set of n

v

variable nodes to
a set of n

c

check nodes by a set of edges. The protograph can
be represented by a parity-check or base biadjacency matrix
B, where B

x,y

is taken to be the number of edges connecting
variable node v

y

to check node c
x

. The parity-check matrix
H of a protograph-based LDPC code can be created by
replacing each non-zero entry in B by a sum of B

x,y

non-
overlapping permutation matrices of size M ⇥ M and each
zero entry by the M ⇥M all-zero matrix. It is an important
feature of this construction that each derived code inherits the
degree distribution and graph neighborhood structure of the
protograph. The ensemble of protograph-based LDPC codes
with block length n = Mn

v

is defined by the set of matricesH
that can be derived from a given protograph using all possible
combinations of M ⇥M permutation matrices.

C. Nested Codes

Nested codes are well-suited for various applications in
the area of network communications. Nested codes can be
simply defined [1] as a pair of linear codes (C1, C2) that
satisfy the following relation

C2 ⇢ C1, (1)

which implies that each codeword of C2 is also a codeword
of C1. This can be extended to multiple subcodes for the
same base, or global, code. Nested codes can be defined via a
partitioning of the parity check matrix H 2 Fm⇥n

2 , where
H is partitioned into (potentially overlapping) submatrices
H

i

of size m
i

⇥ n. Then, the resulting subcodes C
i

of rate
R

i

� 1�m
i

/n are defined via the null space of their parity
check matrices H

i

, i = 1, 2, . . . , N , and

cHT = 0 ) cHT

i

= 0.

Note that if any submatrix H
i

is completely contained within
another, H

j

, then C
j

⇢ C
i

and R
j

 R
i

. Selecting which m
i

rows to choose to form code C
i

can be a difficult optimization
problem; however, by imposing a protograph structure, the
problem reduces to choosing subgraphs of the protograph with
good ensemble properties.

Protograph-based nested codes are constructed using the
procedure described Section II-B. A nested base matrix B
of size b ⇥ c is constructed, and partitioned into submatrices
B1, . . . ,BN

of size b
i

⇥ c according to the target design rates
of the subcodes R

i

� 1 � b
i

/c, i = 1, 2, . . . , N . After graph
lifting the nested base matrix, the lifted B

i

corresponds to the
parity-check matrix H

i

of size b
i

M ⇥ cM corresponding to
subcode C

i

. The degree distribution of H and permutations
used in the graph lifting can be optimized to construct good
lifted codes [3].

III. MULTI-LEVEL GRAPH OPTIMIZATION

In this section, we first review the design example from
[3] used to demonstrate our proposed procedure, then apply
the graph modification technique.

A. Design Example

For the purpose of demonstrating the procedure and
providing numerical results, we study the nested protograph
described in [3]. This protograph has a 12 ⇥ 16 base parity-
check matrix

B =
2

6666666666666666664

1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1
0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1
0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1
1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1
0 0 0 1 0 1 0 0 1 0 1 1 0 0 1 0
1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0
0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1
1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1

3

7777777777777777775

.

After lifting with M = 305, the resulting parity-check
matrix has size 3660 ⇥ 4880. In this new lifted matrix, the
first b1 = 10 row blocks, or rows 1 through 3050, form parity-
check matrix H1 and represent subcode C1, the middle 8 row
blocks, rows 611 through 3050, form H and represent the
“global” code C, and the final b2 = 10 row blocks, rows
611 through 3660, form H2 and represent subcode C2. Note
that C1 ⇢ C and C2 ⇢ C. During the lifting process, the
permutation matrices were carefully selected to avoid 4-cycles,
therefore the graphs corresponding to H, H1, and H2 all
have girth at least 6. The three codes C, C1, and C2, all of
length n = 4880, have code rates R = 0.5, R1 = 0.375, and
R2 = 0.375, respectively.

Each of these codes was simulated with binary-phase
shift-keying (BPSK) modulation on a binary-input AWGN
channel using the sum-product decoding algorithm (SPA). The
simulations were allowed a maximum of 100 iterations and
at least 100 word errors were collected for each SNR point.
The resulting BER performance curves for each of the three
nested code sections can be seen in Figure 1 (solid lines).
Also shown for comparison are randomly constructed codes
without 4-cycle prevention (dashed lines). We observe that the
three codes have good waterfall performance (due to the good
iterative decoding threshold of the protograph); however, there
is a clear change of slope at around 1.5 dB to 2.0 dB, where
the error floor region begins. In this region, the probability of
error decays slowly with SNR, flattening off at BERs around
10�5 to 10�6. The poor performance in this region motivates
our efforts to optimize the graph to lower the error-floor. Note
that the 4-cycle free codes have similar performance to the
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Fig. 1: Performance of protograph-based nested codes C,
C1, and C2, randomly constructed (dashed lines) and

constructed with no 4-cycles (solid lines).

codes presented in [3]. Further efforts to increase the girth of
the nested graphs could prove helpful; however, as we show
in the next subsection, dominant errors from typical lifted
graphs of this construction correspond to a 12-cycle. It is a
very challenging problem to lift this protograph such that all
nested codes have girth 14.

B. Identification and Removal of Harmful Structures

The first step in our procedure is to determine the
dominant errors for each of the subcodes. For certain code
constructions, this may be known in advance, e.g., structured
array codes with column weight 3 have (4, 2) absorbing sets
as the dominant errors when decoded with SPA [9], for
other codes this can be determined empirically by computer
simulation or by exhaustive search of the graph [12].

For the example nested code structure discussed in
Section III-A we performed an empirical investigation via
computer simulation to determine which parts of the nested
code graphs were causing errors and to identify the nature of
these objects. The error locations were recorded by the simu-
lation software and processed to determine local connectivity.
The results obtained for this error locating procedure can be
seen in Table I, which details the most frequent, or “most
dominant error”, recorded for a given SNR. The SNR range
was tested in 0.5 dB increments from 0 dB up to 3 dB, which
captures the standard operational range of these nested codes.

We note that for highly irregular constructions, such
as this nested code, we have found that the multiplicity
of dominant errors can be small. This is not the case for
structured regular codes, e.g., array codes [9], for which our
approach may not be as beneficial. Table I shows the specific
results for the global code C described in Section III-A. In the
case of low SNR, there were no dominant errors of length 10
or less collected; these longer errors consist of a concatenation
of multiple trapping sets/AS and are not particularly relevant
for our study since they do not occur at moderate to high

SNRs where the probability of bit error is lower. We can see
that the most frequently observed error location sequence, bit
locations E = {322, 522, 582, 1969, 2055, 2061}, was found
in all the simulations at higher SNR points (1.0 dB to 3.0
dB). The third column in the table records the proportion
of occurrences of the dominant error. As the SNR increases,
we observe for this code that the most recorded error was
dominant and there was no clear second most common error.
We note that, for SNRs at least 1.5 dB, error sequence E
accounts for at least 23% of all errors collected and as high
as 93%, which motivated our investigation of methods to
eliminate this harmful subgraph via graph modification. The
proposed approach of graph modification via shortening works
particularly well for structures with clear dominant errors such
as this.
The results for nested subcodes C1 and C2 were similar

to global code C, so their error location tables have been
omitted due to space constraints. For these subcodes, we
observe that the same subgraph induced by E is present in
their graphs and is also the dominant error in both of those
simulations. Consequently, elimination of this structure can
potentially improve the performance of nested codes C1 and
C2 (in addition to C), and is not likely to degrade their
performance.

SNR Most Dominant Error Recorded
With Length  10

No. Occurrences
No. Errors Collected

0.0 dB No Length 10 Errors Collected N/A
0.5 dB No Length 10 Errors Collected N/A
1.0 dB {322,522,582,1969,2055,2061} 1/100 (1%)
1.5 dB {322,522,582,1969,2055,2061} 32/137 (23%)
2.0 dB {322,522,582,1969,2055,2061} 132/141 (93%)
2.5 dB {322,522,582,1969,2055,2061} 111/123 (90%)
3.0 dB {322,522,582,1969,2055,2061} 112/124 (90%)

TABLE I: Error Information for Global Code C

The induced graph in the subgraph of H according to
code C and corresponding to E is shown in Figure 2(a), which
corresponds to a 12-cycle, or equivalently a (6, 0) absorbing
set/codeword with Hamming weight 6. The variable nodes
involved in error location sequence E have degree 2 (i.e.,
they are localized to the low column weight/weaker region
of the graph). We note that this object prevents the SPA from
correcting errors at these locations and is also harmful for other
channels, such as the BEC, where it can be considered as a
stopping set. Unlike regular LDPC codes, this highly irregular
nested code does not have uniformly distributed codewords of
low weight, in fact this occurrence was the only one found in
the construction. This further motivates our approach to seek
and eliminate the (few) dominant weaknesses in the nested
graph.

C. Graph Modification (Shortening)

Following the identification of errors, we now attempt
to improve the performance of the nested construction by se-
quentially modifying the graph to remove the harmful objects.
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Fig. 2: Induced Tanner graphs of E for the global code C
before and after modification

We focus on the dominant errors, particularly those that occur
throughout the nested code structure, the presence of which
result in a relatively high error floor in all nested codes at high
SNRs. We revisit the subgraphs present in the graphs of C,
C1, and C2 induced by the 6 variable nodes in E and shown
in Figure 2(a). Note that the check node indices change for
subcodes C1 and C2, but the graph induced by E has the same
structure.

We propose a graph shortening technique to ‘break’ the
object: one variable node is removed from all nested codes,
including edges to adjacent check nodes. This has two effects:
1) the code rate is slightly decreased, assuming the rank of

H is unchanged;
2) the graph of all nested codes is modified such that the

object is changed.
Figure 2(b) depicts one way to break the cycle by removing
one of the nodes in the induced subgraph. In this example,
we chose to shorten the code by removing variable node 582
and attached edges from the graph, which is now shown as
a white circle with dotted lines indicating prior connection to
its check nodes. The decision to remove node 582 was made
arbitrarily but due to the symmetry of this structure, similar
results are obtained by removing any one of the other variable
nodes in E.

Note that, by modifying the nested code/parity-check
matrix structure in this way, care needs to be taken to prevent
creating new harmful structures in any of the subcodes. For
example, we wish to avoid creating degree one variable and/or
check nodes, as well as new (smaller) absorbing sets. We note
that although the induced graph of E has the same structure
in all subcodes, the check nodes involved in each varies, thus
care must be taken to ensure good performance in all resulting
subgraphs. The removal of variable node 582 does not create
any new harmful structures and only slightly lowers the code
rates. The original codes C, C1, and C2 have rates R = 0.5,
R1 = 0.375, and R2 = 0.375, respectively, while the modified
codes C 0, C 0

1, and C 0
2 have rates R0 = 0.4999, R0

1 = 0.3749,
and R0

2 = 0.3749, respectively.
The graph modification technique can be extended to

an arbitrary number of levels. Continuing this example, we
performed targeted graph shortening on the already modified
codes C 0, C 0

1, and C 0
2 at the second level to construct codes

C 00, C 00
1 , and C 00

2 , respectively. A highly dominant error
structure, such as that found and removed in the first level of

878 952 1346 25601736 2309

490 1368 2866 3825 4235

2952

(a) Induced Tanner graph for
E2

878 952 1346 25601736 2309

490 1368 2866 3825 4235

2952

(b) Induced Tanner graph for
E2 with variable node 4235

removed

Fig. 3: Induced Tanner graphs of E2 before and after
modification

modification was not present at the second level; instead we
observe multiple less dominant sequences with the proportion
of occurrences of the “dominant” error in the 2% to 9%
ranges instead of 23% to 99% like we saw at the first level.
Consequently, we do not expect such a dramatic improvement
as with the first level.
The global code C 0 and subcode C 0

1 simulations
contained the error location sequence E2 =
{490, 1368, 2866, 3825, 4235} which is dominant and
now targeted for removal. This error location sequence, or a
subset of E2, occurred in a maximum of 4% of the recorded
errors in C 0 and in a maximum of 9% of recorded errors
in C 0

1 over the error-floor region. Simulations of subcode
C 0

2 did not show E2, which leads us to expect little or no
improvement in its level two BER performance. Figure 3(a)
depicts the induced Tanner graph for E2. We note that this
set of variable nodes corresponds to a (5, 1) AS that contains
several cycles of different lengths. Figure 3(b) depicts the
induced Tanner graph for E2 after the removal of variable
node 4235 from the parity-check matrices of C 0, C 0

1, and C 0
2.

Note that removing this node breaks all of the cycles in the
subgraph.
As a consequence of removing variable node 4235, the rate

of the second level modified codes is further decreased. The
first level consisted of codes C 0, C 0

1, and C 0
2 with rates R0 =

0.4999, R0
1 = 0.3749, and R0

2 = 0.3749, respectively; while
the second level consisted of codes C 00, C 00

1 , and C 00
2 with rates

R00 = 0.4998, R00
1 = 0.3747, and R00

2 = 0.3747, respectively.
As will be confirmed empirically in in Section IV, the limited
presence of E2 in the nested codes is not expected to result
in as large of an improvement in BER performance as the
removal of E had in the first level of graph modification.

The approach can be extended as many times as neces-
sary. Note that if the multiplicity of a particular object is large,
graph shortening should be repeatedly applied to eliminate all
objects in that class (if possible). This could result in large rate
loss. For irregular constructions, such as this design example,
this is typically not the case. Finally, we note that similar
results to those presented here were obtained from different
nested codes from the protograph-based ensemble.

IV. NUMERICAL RESULTS

Figure 4 depicts the results of computer simulations
performed on our modified nested code structures C 0, C 0

1,
and C 0

2 (dashed lines) compared to the performance of the
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Fig. 4: Original nested codes C, C1, and C2 (solid lines) vs.
first level modified codes C 0, C 0

1, and C 0
2 (dashed lines)

original codes C, C1, and C2 (solid lines), respectively. We
observe that the performance of all of the codes after graph
modification experience a significant improvement in BER in
the higher SNR ranges, 2 dB to 3 dB, which constitute the
error-floor regions discussed previously. We also note that the
frame error rate (FER), not shown in the figure, also displayed
similar performance improvement. This improvement was
achieved for only a slight loss in rate, as discussed in Section
III-C.

Figure 5 depicts the results of the second level of our
graph modification technique. It should be noted that as the
graph modification process is applied to already modified
codes, the improvement in BER and FER will typically get
smaller as the harmful structures in the codes graphs become
less prevalent and are more difficult to remove. We can see
in Figure 5 that applying the graph modification procedure to
the already modified codes C 0 and C 0

1 has a noticeable (but
less significant than the first level) impact on the BER in the
error-floor regions (2 dB to 3 dB) while modifying C 0

2 did not
have much of an impact, with almost identical results to the
first level of modification. This was expected since the object
removed from C 0

2 did not appear as a dominant error object
in its respective recorded error locations. It should be noted
that even though C 00

2 did not show a noticeable improvement
in the error-floor region, both C 0 and C 0

1 were improved - thus
further global optimization could be considered.

V. CONCLUSION

In this paper, a method to lower the error-floor of nested
protograph-based LDPC codes was proposed. The method
involved the use of a graph shortening procedure that required
identification and targeted removal of harmful graph structures,
such as absorbing sets. We showed by example that this
procedure significantly improved the BER performance in the
error-floor region for both the global code and subcodes in
the nested code structure. In addition, we demonstrated that
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this method could be applied repeatedly to further improve the
error-floor performance of the nested code structure.
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